Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanotube Membrane Sensors: Resistive Sensing and Ion Channel Mimetics

Identifieur interne : 008774 ( Main/Exploration ); précédent : 008773; suivant : 008775

Nanotube Membrane Sensors: Resistive Sensing and Ion Channel Mimetics

Auteurs : M. Wirtz [États-Unis] ; C. R. Martin [États-Unis]

Source :

RBID : ISTEX:B1252E21843EC2B609AEC98AB516A5D651B60551

English descriptors

Abstract

Nanotubule membranes are utilized for sensing applications and ion channel mimetics. The nanotubule membranes are composed of either gold or alumina. The gold nanotubule membranes are prepared via electroless deposition of Au on to the pore walls of a polycarbonate membrane, ie, the pores act as templates for the nanotubes. These membranes are a new class of molecular sieves and can be used to separate small molecules on the basis of molecular size. In addition, the use of these membranes in new approaches to electrochemical sensing is discussed. In this case, a current is forced through the nanotubes, and analyte molecules present in a contacting solution phase modulate the value of this transmembrane current. We further discuss synthetic micropore and nanotube membranes that mimic the function of a ligand‐gated ion channel, ie, these membranes can be switched from an ‘off’ state (no or low ion current through the membrane) to an ‘on’ state (higher ion current) in response to the presence of a chemical stimulus, eg, drug or surfactant. Ion channel mimics are based on both modified Au nanotube and microporous alumina membranes. First published online: July 12, 2002.

Url:
DOI: 10.1002/seup.200211102


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanotube Membrane Sensors: Resistive Sensing and Ion Channel Mimetics</title>
<author>
<name sortKey="Wirtz, M" sort="Wirtz, M" uniqKey="Wirtz M" first="M." last="Wirtz">M. Wirtz</name>
</author>
<author>
<name sortKey="Martin, C R" sort="Martin, C R" uniqKey="Martin C" first="C. R." last="Martin">C. R. Martin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B1252E21843EC2B609AEC98AB516A5D651B60551</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/seup.200211102</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-W8J73XBG-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002A02</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002A02</idno>
<idno type="wicri:Area/Istex/Curation">002965</idno>
<idno type="wicri:Area/Istex/Checkpoint">001C10</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001C10</idno>
<idno type="wicri:doubleKey">1432-2404:2002:Wirtz M:nanotube:membrane:sensors</idno>
<idno type="wicri:Area/Main/Merge">008C30</idno>
<idno type="wicri:Area/Main/Curation">008774</idno>
<idno type="wicri:Area/Main/Exploration">008774</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Nanotube Membrane Sensors: Resistive Sensing and Ion Channel Mimetics</title>
<author>
<name sortKey="Wirtz, M" sort="Wirtz, M" uniqKey="Wirtz M" first="M." last="Wirtz">M. Wirtz</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL1</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martin, C R" sort="Martin, C R" uniqKey="Martin C" first="C. R." last="Martin">C. R. Martin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL1</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Sensors Update</title>
<title level="j" type="alt">SENSORS UPDATE</title>
<idno type="ISSN">1432-2404</idno>
<idno type="eISSN">1616-8984</idno>
<imprint>
<biblScope unit="vol">11</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="35">35</biblScope>
<biblScope unit="page" to="64">64</biblScope>
<biblScope unit="page-count">30</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2002-12">2002-12</date>
</imprint>
<idno type="ISSN">1432-2404</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1432-2404</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Alkyl</term>
<term>Alkyl chain</term>
<term>Alumina</term>
<term>Alumina membrane</term>
<term>Alumina membranes</term>
<term>Anal</term>
<term>Analyte</term>
<term>Analyte molecule</term>
<term>Analyte species</term>
<term>Analytes</term>
<term>Aqueous solution</term>
<term>Benzene group</term>
<term>Calibration curves</term>
<term>Channel mimetics</term>
<term>Channel pores</term>
<term>Chem</term>
<term>Concentration range</term>
<term>Constant transmembrane</term>
<term>Data show</term>
<term>Detection limit</term>
<term>Detection limits</term>
<term>Electroless</term>
<term>Electrolyte</term>
<term>Electrolyte solutions</term>
<term>Feed solution</term>
<term>Figure plots</term>
<term>Filtration</term>
<term>Free solution</term>
<term>Gold nanotube membranes</term>
<term>Hulteen</term>
<term>Hydrophobic</term>
<term>Hydrophobic effect</term>
<term>Impedance</term>
<term>Impedance data</term>
<term>Jirage</term>
<term>Langmuir</term>
<term>Large molecule</term>
<term>Membrane</term>
<term>Membrane preparation</term>
<term>Membrane resistance</term>
<term>Mimetics</term>
<term>Molecular dimensions</term>
<term>Molecular sieves</term>
<term>Molecular sieving</term>
<term>Molecule</term>
<term>Nanotube</term>
<term>Nanotube membrane</term>
<term>Nanotube membrane sensors</term>
<term>Nanotube membranes</term>
<term>Nanotubule</term>
<term>Nanotubule membranes</term>
<term>Permeation</term>
<term>Permeation experiments</term>
<term>Plating</term>
<term>Pore</term>
<term>Pore diameter</term>
<term>Pore walls</term>
<term>Quinine</term>
<term>Resistive</term>
<term>Salt solutions</term>
<term>Selectivity</term>
<term>Selectivity coefficient</term>
<term>Sensor</term>
<term>Sieving</term>
<term>Sizebased selectivity</term>
<term>Solution phase</term>
<term>Surfactant</term>
<term>Transmembrane</term>
<term>Transport data</term>
<term>Transport experiments</term>
<term>Transport properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanotubule membranes are utilized for sensing applications and ion channel mimetics. The nanotubule membranes are composed of either gold or alumina. The gold nanotubule membranes are prepared via electroless deposition of Au on to the pore walls of a polycarbonate membrane, ie, the pores act as templates for the nanotubes. These membranes are a new class of molecular sieves and can be used to separate small molecules on the basis of molecular size. In addition, the use of these membranes in new approaches to electrochemical sensing is discussed. In this case, a current is forced through the nanotubes, and analyte molecules present in a contacting solution phase modulate the value of this transmembrane current. We further discuss synthetic micropore and nanotube membranes that mimic the function of a ligand‐gated ion channel, ie, these membranes can be switched from an ‘off’ state (no or low ion current through the membrane) to an ‘on’ state (higher ion current) in response to the presence of a chemical stimulus, eg, drug or surfactant. Ion channel mimics are based on both modified Au nanotube and microporous alumina membranes. First published online: July 12, 2002.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Wirtz, M" sort="Wirtz, M" uniqKey="Wirtz M" first="M." last="Wirtz">M. Wirtz</name>
</region>
<name sortKey="Martin, C R" sort="Martin, C R" uniqKey="Martin C" first="C. R." last="Martin">C. R. Martin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008774 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 008774 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:B1252E21843EC2B609AEC98AB516A5D651B60551
   |texte=   Nanotube Membrane Sensors: Resistive Sensing and Ion Channel Mimetics
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022